Spectral Element Method

Background and Details

A compilation by

Dr. Jacques C. Richard

JC-Richard@CSU.edu
Spectral Element Method

- Like Finite Element Method
- But with Spectral Functions
- Infinitely differentiable global functions of SEM vs. local character of FEM functions.
- Adaptive mesh
- Polynomials of high and differing degrees
- Non-conforming spectral element method presented here is as described by Fischer; Patera; van de Vosse and Minev; Bernadi and Maday, etc.
SEM Discretization

- Polynomial approximation for velocity two degrees higher than that for pressure.
- Avoids spurious pressure modes.
- Like solving eqs. on a staggered grid where \(\mathbf{u} \) and \(p \) are solved on different grids but coupled (e.g., via interpolation).
SEM Approach

- Temporal discretization of Navier-Stokes eqs. based on high-order operator splitting methods
 - Splitting problem into convection & diffusion
 - Some combination of integration schemes for convection operator or for time-dependent terms that may be high order
 - With some degree of polynomial for SEM discretization of diffusion terms giving high-order in space
- Coupled w/SEM spatial discretization to yield sequence of symmetric positive definite (SPD) sub-problems to be solved at each time step.
Current Models

- SEM for unsteady incompressible viscous flow
- Navier-Stokes eqs.

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}
\]

\[
\nabla \cdot \mathbf{u} = 0
\]
Initial and Boundary Conditions

- Ic: $u(x,0) = u^0(x)$
- bc’s: $u = u_v$ on $\partial \Omega_v$,
 $$\nabla u_i \cdot \hat{u}_n = 0 \text{ on } \partial \Omega_o \text{ or } \nabla u_i \cdot \hat{n} = 0$$
 - \hat{u}_n is an outward pointing normal on boundary
 - Subscripts v and o denote parts of boundary w/either “velocity” or “outflow” bc’s
SEM Algorithm

- The convective term is expressed as a material derivative, which is discretized using a stable \(m \)th order backward-difference scheme (\(m=2 \) or 3)
- For \(m=2 \),
 \[
 \frac{\tilde{\mathbf{u}}^{n-2} - 4\tilde{\mathbf{u}}^{n-1} + 3\tilde{\mathbf{u}}^n}{2\Delta t} = S(\tilde{\mathbf{u}})
 \]
- where RHS represents a linear symmetric Stokes problem to be solved implicitly and \(\tilde{\mathbf{u}}^{n-2} \) is a velocity field that is computed as the explicit solution to a pure convection problem over time interval \([t^{n-2},t^n] \).
SEM Algorithm

• Sub-integration of convection term permits values of Δt corresponding to convective Courant numbers $CFL = \max_\Omega c \Delta t / \Delta r = 1 - 5$

• Significantly reduces number of (computationally expensive) Stokes solves
Operator Splitting

• Splitting leads to unsteady Stokes problem to be solved at each time step in \(\Omega \):

\[
\mathcal{H} \, u^n + \nabla \, p^n = f^n
\]
\[
\nabla \cdot u^n = 0
\]

where \(\mathcal{H} = (- \nabla^2/\text{Re} + c_0 / \Delta t) \) is the Helmholtz operator,

c_0 is an order unity constant

\(f^n \) incorporates treatment of non-linear terms
SEM Algorithm

• Stokes discretization (w/o \(n \)) based on following variational form: Find \((u, p)\) in \(X \times Y\) such that

\[
\frac{1}{\text{Re}} (\nabla u, \nabla v) + \frac{3}{2\Delta t} (u, v) - (p, \nabla \cdot v) = (f, v)
\]

\((\nabla \cdot u, q) = 0 \)

• \(\forall (v, q) \in X \times Y \)， I.e., as weights in \(X \times Y\).
• Inner products: \((l, g) = \int_{\Omega} l(x) g(x) \, d\, x\)
Proper Subspaces

- The proper subspaces for u, v, and p, q are:
 \[X = \left\{ v : v_i \in H^1_0(\Omega), \ i=1,\ldots,d, \ v = 0 \text{ on } \partial\Omega_v \right\}, \ d=2 \text{ if 2D...} \]
 \[Y = L^2(\Omega) \]
 - L^2 is the space of square integrable functions on Ω;
 \[\int_\Omega v^2 dV = \int_\Omega v^2 d^3r \]
 - H^1_0 is the space of functions in L^2 that vanish on the boundary (∂) and whose first derivative (1) is also in L^2;
 \[\int_\Omega (\partial v/\partial r)^2 dV = \int_\Omega (\partial v/\partial r)^2 d^3r \]

- Spatial discretization proceeds by restricting u, v, and p, q to compatible finite-dimensional velocity and pressure subspaces: $X^N \subset X$ and $Y^N \subset Y$
SEM Algorithm

- Stokes discretization is then written as:

 Find \((u, p)\) in \(X^N \times Y^N\) such that

 \[
 \frac{1}{\text{Re}} (\nabla u, \nabla v)_{GL} + \frac{3}{2\Delta t} (u, v)_{GL} - (p, \nabla \cdot v)_G = (f, v)_{GL}
 \]

 \[(\nabla \cdot u, q)_G = 0\]

- \(\forall (v, q) \in X^N \times Y^N\), I.e., as weights in \(X^N \times Y^N\).
- Subscripts \((\ldots)_{GL}\) and \((\ldots)_G\) refer to \textit{Gauss-Lobatto-Legendre} (GL) and Gauss-Legendre (G) quadrature.
Sub-Domains

• In SEM, bases for X^N and Y^N are defined by tessellating domain into K non-overlapping sub-domains $\Omega = \bigcup_{k=1}^{K} \Omega^k$

• Within each sub-domain, functions are represented in terms of tensor-product polynomials on a reference sub-domain, e.g., $\Omega_{\text{ref}} := [-1,1]^d$.
Mapping Sub-Domain to "Reference Sub-Domain"

• Each Ω^k is image of ref. sub-domain under mapping: $x^k(r) \in \Omega^k \Rightarrow r \in \Omega_{\text{ref}}$

• With well-defined inverse:

 $r^k(x) \in \Omega_{\text{ref}} \Rightarrow x \in \Omega^k$

• I.e., each sub-domain is a deformed quadrilateral in \mathbb{R}^2 (2D) or deformed parallelepiped in \mathbb{R}^3 (3D)

• Intersection of closure of any two sub-domains is void, a vertex, an entire edge (2D), or an entire face (3D)
Conforming/Non-Conforming SEM

• For conforming case $\Gamma_{kl} = \Omega^k \cap \Omega^l$ for $k \neq l$ is void, a single vertex, or an entire edge.

• For non-conforming case, Γ_{kl} may be a subset of either $\partial \Omega^k$ or $\partial \Omega^l$ but must coincide with an entire edge of the elements.

• Function continuity, $\mathbf{u} \in H^l_0(\Omega)$, enforced by matching Lagrangian basis functions on sub-domain interfaces.

• The velocity space is thus conforming, even for the nonconforming meshes (by 1st bullet)
Handling Pressure

- To avoid spurious pressure modes, Maday, Patera and Rønquist, and, Bernardi and Maday suggest different approximation spaces for velocity and pressure:

\[X^N = X \cap P_{N,K}(\Omega) \]

\[Y^N = Y \cap P_{N-2,K}(\Omega) \]

where

\[P_{N,K}(\Omega) = \{ v(x^k(r)) | \Omega \}^k \in P_N(r_1) \otimes \cdots \otimes P_N(r_d), k=1,\ldots,K \]

and \(P_N(r) \) is space of all polynomials of degree \(\leq N \)
Space Dimensions

• Dimension of Y^N is $K(N-1)^d$ since continuity is enforced for functions in Y^N
• Dimension of X^N is $dK(N+1)^d$ because
 – functions in X^N must be continuous across sub-domain interfaces
 – Dirichlet bc’s on $\partial \Omega_v$
Function Spaces

- **Velocity Space**: Basis chosen for $P_N(r)$ is set of Lagrangian interpolants on Gauss-Lobatto-Legendre (GL) quadrature pts. in ref. domain: $\xi_i \in [-1,1]$, $i=0,\ldots,N$

- **Pressure Space**: Basis chosen for $P_{N-2}(r)$ is set of Lagrangian interpolants on Gauss-Legendre (G) quadrature pts. in ref. domain: $\eta_i \in]-1,1[\), $i=1,\ldots,N-1$

- Basis for velocity is continuous across sub-domain interfaces but basis for pressure is not
SEM Algorithm Subspaces

• Could also write $X_N := [Z_N H^1_0(\Omega^k)]^d$ and $Y_N := Z_{N-2}$ where $Z_N := \{ v \in L^2(\Omega) \mid v_{|\Omega} \in P_N(\Omega^k) \}$

 - I.e., v belongs to space of functions in L^2
 - $v_{|\Omega}^k$ belongs to space of polynomials of degree $\leq N$ in k^{th} element’s size subspace Ω^k
 - And these both define the space Z_N

• $P_N(\Omega^k)$ is a space of functions for k^{th} element Ω^k whose image is a tensor-product polynomial of degree $\leq N$ in a ref. solution domain $\Omega_{\text{ref}} := [-1,1]^d$.
SEM Algorithm Quadrature

- Subscripts $(.,.)_{GL}$ and $(.,.)_G$ referred to Gauss-Lobatto-Legendre (GL) and Gauss-Legendre (G) quadrature which are:
- \[\int_{-1}^{1} f(x) dx = w_1 f(-1) + w_N f(1) + \sum_{i=1}^{N} w_i f(x_i) \]
Gauss-Lobatto-Legendre (GL) Quadrature

- \(\int_{-1}^{1} f(x) \, dx = w_1 f(-1) + w_N f(1) + \sum_{i} w_i f(x_i) \) where
- \(w_i^{GL} = \frac{2N}{(1 - x_i^2) L''_{N-1}(x_i) L'_N(x_i)} = \frac{2}{N(N-1)[L'_{N-1}(x_i)]^2} \)
- \(L_n \) are the Legendre polynomials,
- Gauss-Lobatto points are zeroes of \(L'_N \) or \((1-x^2) L'_N \) & at endpoints (-1,1)
- \(w_{1,N}^{GL} = \frac{2}{N(N-1)} \)
Gauss-Lobatto-Legendre (GL) Quadrature

• w/error

\[E = \frac{N(N-1)^3 2^{2N-1} [(N-2)!]^4}{(2N-1)[(2N-2)!]^3} f^{(2N-2)}(\xi) \]

• for \(\xi \in (-1,1) \)

• The weights may also be written as

\[w_i^{GL} = \rho_i = \frac{2}{N(N+1)} \frac{1}{[L_N(x_i)]^2} \]
Gauss-Legendre (G) Quadrature

- Same as Gauss-Legendre-Lobatto
- **But w/o endpoints (not used for prescribed function values at boundaries)**
- Weights are

\[w_i^G = \sigma_i = \frac{2}{(1 - x_i^2)[L_{N+1}(x_i)]^2} \]

- Where \(L_N \) are the **Legendre** polynomials,
- Gauss points (interior points) are zeroes of \(L_{N+1} \)
Interpolation Polynomials

• Basis functions are Legendre-Gauss-Lobatto-Lagrange interpolation polynomials:

\[h_i = \frac{-1}{N(N + 1)L_N(x_i)} \frac{(1 - x^2)L_N'(x)}{x - x_i} \]
2D Affine Mappings

- $\text{In } f (x^k (r)), r \in \Omega_{\text{ref}}$, define:

 $x^k (r) = x^k (r_1, r_2) = (x^k_{0,1} + L^k_1 r_1 / 2, x^k_{0,2} + L^k_2 r_2 / 2)$

 where $x^k_{0,i}$ and L^k_j represent local translation and dilation constants.

- Evaluation of elemental integrals for general curvilinear coordinates is facilitated by these mappings of physical (x) system into local (r) system.
2D Affine Mappings

- Derivatives in elemental integrals can be expressed in local \((r)\) coordinates w/Jacobian transformation (in indicial notation):
 \[
 \frac{\partial}{\partial x_i} = J^{-1}_{i\alpha} \frac{\partial}{\partial r_{\alpha}}
 \]
- With Jacobian:
 \[
 J = \begin{bmatrix} x_{1,r_1} & x_{2,r_1} \\ x_{1,r_2} & x_{2,r_2} \end{bmatrix}
 \]
- Jacobian determinant:
 \[
 |J| = x_{1,r_1} x_{2,r_2} - x_{2,r_1} x_{1,r_2}
 \]
- And inverse Jacobian:
 \[
 J^{-1} = \frac{1}{|J|} \begin{bmatrix} x_{2,r_2} & -x_{2,r_1} \\ -x_{1,r_2} & x_{1,r_1} \end{bmatrix}
 \]
2D Affine Mappings

- Using $x^k(r_1,r_2) = (x^k_{0,1} + L_1^k r_1/2, x^k_{0,2} + L_2^k r_2/2)$

- The Jacobian is: $J = \begin{bmatrix} x_{1,r_1} & x_{2,r_1} \\ x_{1,r_2} & x_{2,r_2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} L_1^k & 0 \\ 0 & L_2^k \end{bmatrix}$

- Its determinant is: $|J| = x_{1,r_1} x_{2,r_2} - x_{2,r_1} x_{1,r_2} = \frac{L_1^k L_2^k}{4}$

- And inverse Jacobian is: $J^{-1} = \frac{1}{|J|} \begin{bmatrix} x_{2,r_2} & -x_{2,r_1} \\ -x_{1,r_2} & x_{1,r_1} \end{bmatrix} = \begin{bmatrix} \frac{2}{L_1^k} & 0 \\ 0 & \frac{2}{L_2^k} \end{bmatrix}$
Elemental Integrals

• Using the affine mappings, the integrals can be evaluated as (e.g.):

\[
(v_i, f_i)^k = \int_{-1}^{1} \int_{-1}^{1} v^k_i f^k_i |J|^k \, dr_1 \, dr_2
\]

• Numerical integration rules for element \(\Omega_k \) with \(GL \) is

\[
\int_{\Omega_k} g \, dV = \rho_m \rho_n |J|^k(\xi_m, \xi_n) | g^k(\xi_m, \xi_n) \] for all \(g^k \in C^0(\Omega_k) \)
Quadrature Implementation

• Lagrangian bases makes quadrature implementation convenient

• Let \(f^k(\mathbf{r}) := f(\mathbf{x}^k(\mathbf{r})), \mathbf{r} \in \Omega_{\text{ref}} \)

• In \(\mathbb{R}^2 \) (\(\mathbb{R}^3 \) follows readily from tensor product form):
 \[
 (f, g)_{GL} = \sum_{k} \sum_{i=0}^{N} \sum_{j=0}^{N} f^k(\xi_i, \xi_j) \cdot g^k(\xi_i, \xi_j) \cdot \left| J^k(\xi_i, \xi_j) \right| \cdot \rho_i \rho_j
 \]
 \[
 (f, g)_{G} = \sum_{k} \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} f^k(\eta_i, \eta_j) \cdot g^k(\eta_i, \eta_j) \cdot \left| J^k(\eta_i, \eta_j) \right| \cdot \sigma_i \sigma_j
 \]

where \(J^k(\mathbf{r}) \) is Jacobian from transformation \(\mathbf{x}^k(\mathbf{r}) \)
Polynomial Representation

• Every scalar in $\mathbf{P}_{N,K}(\Omega)$ is represented in the form
 $$f(x)|_{\Omega}^k = \sum_{i=0}^{N} \sum_{j=0}^{N} f^k_{ij} h_i(r_1) h_j(r_2)$$

• where $h_i(r) \in \mathbf{P}_N(r)$ is the Lagrange polynomial satisfying $h_i(\xi_j) = \delta_{ij}$

• For each sub-domain, a natural ordering, f^k_{ij}, $i, j \in \{0,\ldots,N\}^2$ is associated w/vector f^k

• And, in turn, natural ordering, f^k_{ij}, $k \in \{0,\ldots,K\}^2$ is associated w/the $K(N+1)^2 + 1$ vector f_L
Discrete Stokes System

• Inserting SEM basis

\[f(x^k(r))|_{\Omega^k} = \sum_{i=0}^{N} \sum_{j=0}^{N} f_{ij} h_i(r_1) h_j(r_2) \]

into

\[
\frac{1}{\text{Re}} (\nabla u, \nabla v) + \frac{3}{2\Delta t} (u, v) - (p, \nabla \cdot v) = (f, v)
\]

\[
(\nabla \cdot u, q) = 0
\]

yields \(H u^n - D^T p^n = B f^n, D u^n = 0 \)

where

\(H = A/\text{Re} + B/\Delta t = \) discrete equivalent of Helmholtz operator;
\(A = \) discrete Laplacian,
\(B = \) mass matrix associated with the velocity mesh (diagonal);
\(D = \) discrete divergence operator
Discrete Stokes System

- A pressure correction step is then needed:

$$ E \, \delta \rho = - D \, u' $$

$$ \underline{u}^n = \underline{u}^n + \Delta t \, B^{-1} \, D^T \, \delta \rho + O(\Delta t^2) $$

where $E = \Delta t \, D \, B^{-1} \, D^T$ is the Stokes Schur complement governing the pressure in the absence of the viscous term.
Discrete Stokes System

- Define unassembled mass matrix to be block-diagonal matrix $B_L \equiv diag(B^k)$
- Where each local mass matrix is expressed as tensor-product of 1D operators:
 \[
 B^k = \left(\frac{L_1^k L_2^k}{4} \right) B^* \otimes B^*
 \]
- Where $B^* = diag(\rho_i)$, $i=0,\ldots,N$
Discrete Stokes System

• Express

\[(f,g)_{GL} = \sum \sum \sum_{k \text{ } i=0 \text{ } j=0}^{N} f^k(\xi_i,\xi_j) \cdot g^k(\xi_i,\xi_j) \cdot |J^k(\xi_i,\xi_j)| \cdot \rho_i \rho_j\]

in terms of mass matrices as

\[\forall f,g \in P_{N,K}(\Omega) \ (f,g)_{GL} = \sum_k (f^k)^T B^k g^k = f_L^T B_L g_L\]
Discrete Stokes System

- Similarly, for bilinear form ($\nabla f, \nabla g$):
 \[\forall f, g \in P_{N,K}(\Omega) \quad (f, g)_{GL} = \sum_k (f_k^T A^k g_k^T) = f_L^T A_L g_L \]

- Here $A^L \equiv diag(A^k)$ is the unassembled stiffness matrix and A^k is the local stiffness matrix:
 \[A^k = \begin{pmatrix} L_2^k \\ L_1^k \end{pmatrix} B^* \otimes A^* + \begin{pmatrix} L_1^k \\ L_2^k \end{pmatrix} A^* \otimes B^* \]

- A^* is a 1D stiffness matrix defined in terms of spectral differentiation matrix D^*:
 \[A^*_{ij} = \sum_{l=0}^N D^*_{li} \rho_l D^*_{lj}, \quad i, j \in \{0, \ldots, N\}^2 \]
 \[D^*_{ij} = \frac{dh}{dr} \bigg|_{r=\xi_i} \]
Computing A^k

- Whereas A^* is full, A^k is sparse due to using diagonal mass matrix B^*
- Computational stencil of A^k is a cross, much like finite difference stencil
- For deformed sub-domains, A^k is generally full with $(N+1)^d$ non-zero entries
- Action of A^k upon a vector can be efficiently computed in $O(N^{d+1})$ operations if tensor-product form is retained in favor of its explicit formation
Computing f

- Local sub-domain operators (A_L and B_L) incorporated into global $n_v \times n_v$ system matrices through “direct stiffness” summation assembly procedure which maps vectors from their local representation, f_L to global form, f

- I.e., let Q be global-to-local mapping operator that transfers basis coefs. from global to local ordering: $f_L = Q f$
Computing f

- Local sub-domain operators (A_L and B_L) incorporated into global $n_v \times n_v$ system matrices by defining index set $q_{ijk} \in \{1, \ldots, n_v\}$ which maps vectors from their local representation, f_L, to global form, f.

- Index set has repeated entries for any node (i, j, k) that is physically coincident with another (i', j', k').

- I.e., $q_{ijk} = q_{i'j'k'}$ iff $x^k (r_i, r_j) = x^{k'} (r_{i'}, r_{j'})$

 or $x^k_{ij} = x^{k'}_{i'j'} \Rightarrow u^k_{ij} = u^{k'}_{i'j'}$
Computing Index Maps

• Index map can be represented in matrix form as prolongation operator Q which maps from set of global indices to local index set

• Q is a $K(N+1)^d \times n_v$ is a Boolean matrix w/a single “1” in each row and zeroes elsewhere

• If $m=(k - 1) \cdot (N + 1)^2 + j \cdot (N + 1) + i + 1$ is position of f^k_{ij} in f_L and $q = q_{ijk}$ is the corresponding global index

• Then m^{th} column of Q^T is unit vector \hat{e}_q, I.e., the q^{th} column of the identity matrix
Computing Index Maps

• Application of Q to a vector implies distribution whereas application of Q^T to a vector implies summation, or gathering of information

• Q^T is sometimes referred to as the “direct-stiffness-summation” operator
Discrete Stokes System

- A direct consequence of unique mapping property $q_{ijk} = q_{i'j'k'}$ iff $\mathbf{x}^k(r_i, r_j) = \mathbf{x}^{k'}(r_{i'}, r_{j'})$ and use of Lagrangian basis is that

$$\forall f, g \in P_{N,K}(\Omega) \cap H^1,$$

$$(\nabla f, \nabla g)_{GL} = f^T Q^T A_L Q g$$

- Define $Q^T A_L Q$ as Neumann Laplacian operator - it has a null-space of dimension unity corresponding to constant mode

- Define associated Dirichlet operator as $M^T Q^T A_L Q M$ where M is the diagonal mask matrix having ones on the diagonal at points $q_{ijk} : \mathbf{x}_{ij}^k \in \Omega \cup \partial \Omega_0$ and zeroes elsewhere
Discrete Stokes System

• With operators Q and M the following problems are equivalent:

For $f \in \mathbf{P}_{N,K}(\Omega)$
Find $u \in X^N_0$ such that $(\nabla \nu, \nabla u)_{GL} = (\nu, f)_{GL}, \forall \nu \in X^N_0$
Find $\underline{u} \in R(M)$ such that $\underline{\nu}^T M^T Q^T A_L Q M \underline{u} = M Q^T B_L \underline{f}_L, \forall \underline{\nu} \in R(M)$

• Here $R()$ is the range of argument and \underline{f}_L is the vector of nodal values of $f(x)$

• Direct stiffness-summation operator ensures that solution will lie in H^1 while mask M enforces homogeneous Dirichlet bc: $u=0$ on $\partial \Omega$.
Laplacian and Mass Matrices

• Define discrete Laplacian and mass matrices as:

\[A = M Q^T A_L Q M \]
\[B = M Q^T B_L Q M \]

• Both treated as invertible and SPD

• But this is not strictly true due to null space associated w/boundaries \((u=0)\ bc\ on\ some\ boundaries\)
Stokes Operators

- Using

\[
(f, g)_G = \sum_{k} \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} f^k(\eta_i, \eta_j) \cdot g^k(\eta_i, \eta_j) \cdot |J^k(\eta_i, \eta_j)| \cdot \sigma_i \sigma_j
\]

contribution to \((q, \nabla \cdot u)_G = \sum_{l=1}^{d} \left(q, \frac{\partial u_l}{\partial x_l} \right)_G\) from single element in \(\mathbb{R}^2\) is

\[
\sum_{l=1}^{d} \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} q^k(\eta_i, \eta_j) \cdot \frac{\partial u^k_l}{\partial x_l}(\eta_i, \eta_j) \cdot |J^k(\eta_i, \eta_j)| \cdot \sigma_i \sigma_j
\]
Stokes Operators

• Contribution from q represented by Lagrangian interpolants on Gauss points:

$$q^k(\eta_i, \eta_j) = q^k_{ij}$$

• Derivative of velocity must be interpolated giving rise to matrix form

$$(q, \nabla \cdot \mathbf{u})_G = \sum_{k=1}^{K} \left(q^k \right)^T \left(D_1^k u_1^k + D_2^k u_2^k \right)$$
Stokes Operators

- For affine mappings case, local derivative matrices are define as

 \[D^1_k = \left(\frac{L_2^k}{2} \right) I^* \otimes D^* \quad D^2_k = \left(\frac{L_1^k}{2} \right) D^* \otimes I^* \]

 where \(I^*_{ij} = \sigma_i h_j (\eta_i) \) is the 1D interpolation matrix mapping from Gauss-Lobatto points to Gauss points

- and the weighted 1D differentiation matrix interpolated onto the Gauss points is \(D^*_i = \sigma_i \left. \frac{dh_j}{dr} \right|_{r=\eta_i} \)
Stokes Problem in Matrix Form

- Let $D_i \equiv D_{L,i} Q M$, $i = 1, \ldots, d$
 with $D_{L,i} \equiv diag(D^k_{L,i})$
- In \mathbb{R}^2, matrix form of Stokes problem is
 \[
 \begin{bmatrix}
 H & -D_1^T & & & \\
 -D_1^T & H & -D_2^T & & \\
 -D_1 & -D_2 & 0 & &
 \end{bmatrix}
 \begin{bmatrix}
 u_1 \\
 u_2 \\
 p
 \end{bmatrix}
 = \begin{bmatrix}
 f_1 \\
 f_2 \\
 f_p
 \end{bmatrix}