Humming Bird problem [10 pts]

\[\omega = \int f_s \, ds = \frac{\omega}{5} \]

where \(f_s = 2 (mg) = 2 \times 0.2 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 3.924 \, \text{N} \)

\[S = \frac{2 \pi r \theta}{360^\circ} = \frac{2 \pi \left(5 \times 10^{-2} \, \text{m} \right)}{360^\circ} = 0.069 \, \text{m} \]

\[\omega = \frac{f_s}{S} = 0.274 \, \text{J/stroke} \]

\[W = \frac{\text{Work}}{S} = 0.274 \, \text{J/stroke} \times 100 \, \text{strokes} \times \frac{746}{746} = 0.04 \, \text{J} \]
4.1.2 \((10 \text{ pts}) \)

GOAL: Find the speed of the mass when it is 0.6 m from the wall

GIVEN: \(m = 0.5 \text{ kg}, \ k = 40 \text{ N/m}, \) unstretched length \(L_0 = 0.3 \text{ m}, \ x_1 = 2 \text{ m}, \ x_2 = 0.6 \text{ m} \)

DRAW:

\[
\begin{align*}
\text{STATE 1} & \quad \frac{x}{J} \quad m \quad \square \quad L_0 \\
\text{STATE 2} & \quad \frac{\text{wall}}{m}
\end{align*}
\]

ASSUME: The surface is frictionless and the spring is linear.

FORMULATE EQUATIONS:

We'll apply work/energy:

\[
\begin{align*}
\mathcal{KE}_2 & = \mathcal{KE}_1 + W_{1-2} \\
\mathcal{KE}_1 & = 0 \implies \mathcal{KE}_2 = W_{1-2}
\end{align*}
\]

SOLVE:

\[
W_{1-2} = \int_{x_1}^{x_2} F_{\text{ext}} \, dt = \int_{x_1}^{x_2} -(k(x - L_0)) \, dx
\]

\[
W_{1-2} = -k \int_{x_1}^{x_2} (x - L_0) \, dx = -k \left[\frac{x^2}{2} - L_0 x \right]_{x_1}^{x_2}
\]

\[
W_{1-2} = -(40 \text{ N/m}) \left[\left(\frac{(0.6 \text{ m})^2}{2} - (0.3 \text{ m})(0.6 \text{ m}) \right) - \left(\frac{(2 \text{ m})^2}{2} - (0.3 \text{ m})(2 \text{ m}) \right) \right] = 56 \text{ J}
\]

\[
\mathcal{KE}_2 = W_{1-2} = 56 \text{ J} = \frac{1}{2} mv^2 \implies v = 14.97 \text{ m/s}
\]

\[
\dot{v} = -14.97 \text{ m/s}
\]
4.1.8 (to p/s)

GOAL: Determine the coefficient dynamic friction needed to bring a sliding mass to rest after rising 5 m.

GIVEN: Mass, slope and initial speed.

DRAW:

\[
\begin{bmatrix}
\hat{b}_1 & \hat{b}_2 \\
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{bmatrix}
\]

FORMULATE EQUATIONS: The FBD gives the forces on the mass as

\[
N\hat{b}_2 - \mu N\hat{b}_1 - mg\hat{f}
\]

In addition to this, we'll use our work/energy formulation:

\[
\frac{1}{2}mv_1^2 + W_{1-2} = \frac{1}{2}mv_2^2
\]

SOLVE: The forces we need be concerned with (the ones that act along the path) are given by

\[
F = -\mu N - mg \sin \theta
\]

A force balance in the \(\hat{b}_2 \) direction gives us \(N = mg \cos \theta \) and so our applied force becomes

\[
F = -mg(\mu \cos \theta + \sin \theta)
\]

Applying work/energy from state 1 to state 2 gives us

\[
\frac{1}{2}mv_1^2 - mg(\mu \cos \theta + \sin \theta)d = 0
\]

\[
\mu = \frac{v_1^2 - 2g \sin \theta d}{2g \cos \theta d} = \frac{(10.2 \text{ m/s})^2 - 2(9.81 \text{ m/s}^2)(0.5)(10 \text{ m})}{2(9.81 \text{ m/s}^2)(0.866)(10 \text{ m})}
\]

\[
\mu = 0.035
\]
4.1.21 (10 pts)

GOAL: Determine the speed of a mass particle at $|\theta| = 30^\circ$ along a circular path.

GIVEN: Particle's mass, shape of path, initial velocity and position.

DRAW:

FORMULATE EQUATIONS:
To solve the problem we'll use the energy/work formula:

$$\frac{1}{2}mv_1^2 + W_{1-2} = \frac{1}{2}mv_2^2$$

SOLVE:
We'll first determine if the mass has enough energy to reach the top of the hill with a finite speed. If so, we know that it will then move to the right side of the hill (θ negative) and thus will eventually reach $\theta = -30^\circ$. If it turns out not to have enough energy to reach $\theta = 0$ then the conclusion is that it stops somewhere partway up, reverses direction and eventually reaches $\theta = 30^\circ$. The force due to gravity that acts against the mass along its trajectory is $mg\sin\theta$.

From state 1 to state 2 we have

$$\frac{1}{2}mv_1^2 + \int_{\theta_0}^{0} mg\sin\theta r d\theta = \frac{1}{2}mv_2^2$$

$$v_2^2 = 2 \left[\frac{1}{2} (1.25\text{ m/s})^2 - (9.81\text{ m/s}^2)(1\text{ m})(1 - \cos 20^\circ) \right]$$

$$v_2^2 = 0.379\text{ (m/s)}^2$$

v_2^2 is positive, implying a real solution. Our conclusion is that it does reach $\theta = 0$ and therefore will pass $\theta = -30^\circ$.

Denoting its position at $\theta = 30^\circ$ as state 3 we have

$$\frac{1}{2}mv_1^2 + \int_{\theta_0}^{-30^\circ} mg\sin\theta r d\theta = \frac{1}{2}mv_3^2$$

$$v_3^2 = 2 \left[\frac{1}{2} (1.25\text{ m/s})^2 - (9.81\text{ m/s}^2)(1\text{ m})(\cos(-30^\circ) - \cos 20^\circ) \right]$$

$$v_3 = -1.73 \text{ m/s}$$
4.2.28 (Out of this section)

GOAL: Find safe length of bungie cord and impact velocity if cord is too weak.

GIVEN: Initial and final height of jumper, mass of jumper and spring constant of bungie cord.

DRAW:

- 70 m --- JUMP HEIGHT (STATE 1)
- 3 m --- SPEED = ZERO HEIGHT (STATE 2)
- 0 --- GROUND

FORMULATE EQUATIONS: Conservation of energy

\[K\mathcal{E}|_1 + P\mathcal{E}|_1 = K\mathcal{E}|_2 + P\mathcal{E}|_2 \]

(1)

SOLVE:

(a) Kinetic and potential energies

\[K\mathcal{E}|_1 = 0, \quad P\mathcal{E}_{g}|_1 = mg(70 \text{ m}), \quad P\mathcal{E}_{bc}|_1 = 0 \]

(2)

\[K\mathcal{E}|_2 = 0, \quad P\mathcal{E}_{g}|_2 = mg(3 \text{ m}), \quad P\mathcal{E}_{bc}|_2 = \frac{1}{2}k(67 \text{ m} - L)^2 \]

(3)

Using (1) we get

\[(55 \text{ kg})(9.81 \text{ m/s}^2)(70 \text{ m}) = (55 \text{ kg})(9.81 \text{ m/s}^2)(3 \text{ m}) + \frac{1}{2}(22 \text{ N/m})(67 \text{ m} - L)^2 \]

(4)

\[L = 9.67 \text{ m} \]

(b) Kinetic and potential energies

\[K\mathcal{E}|_1 = 0, \quad P\mathcal{E}_{g}|_1 = mg(70 \text{ m}), \quad P\mathcal{E}_{bc}|_1 = 0 \]

(5)

\[K\mathcal{E}|_2 = \frac{1}{2}mv^2, \quad P\mathcal{E}_{g}|_2 = 0, \quad P\mathcal{E}_{bc}|_2 = \frac{1}{2}k(70 \text{ m} - L)^2 \]

(6)

Again, using (1) we get

\[(55 \text{ kg})(9.81 \text{ m/s}^2)(70 \text{ m}) = \frac{1}{2}(55 \text{ kg})v^2 + \frac{1}{2}(0.9)(22 \text{ N/m})(70 \text{ m} - 9.67 \text{ m})^2 \]

(7)

\[v = 7.95 \text{ m/s} \]

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

149
GOAL: Find new velocity when grade increases.
GIVEN: Constant power condition and grade change. Initial speed is 10 mph.

DRAW:

\[\sum \mathbf{F} = \mathbf{F}_g - \mathbf{F}_N = \mathbf{F}_F + \mathbf{F}_T \]

\[g \downarrow \quad mg \quad \sum \theta \]

\[F \quad N \]

FORMULATE EQUATIONS: We’ll apply work energy:

\[\mathcal{KE}_2 + \mathcal{PE}_2 = \mathcal{KE}_1 + \mathcal{PE}_1 + W_{nc1-2} \] \hspace{1cm} (1)

Definition of power:

\[P = \frac{dW}{dt} \] \hspace{1cm} (2)

The two angles of ascent are given by

\[\theta_1 = \arctan 0.05 = 2.86^\circ, \quad \theta_2 = \arctan 0.06 = 3.43^\circ \]

Let the speed on the initial slope be given by \(v_1 \) and on the greater slope be given by \(v_2 \).

SOLVE:

(1) \(\Rightarrow \)

\[0 + mgh = 0 + 0 + W_{cyclist} \] \hspace{1cm} (3)

(2), (3) \(\Rightarrow \)

\[P = \frac{dW_{cyclist}}{dt} = mg \frac{dh}{dt} \] \hspace{1cm} (4)

\[\left(\frac{dh}{dt} \right)_1 = v_1 \sin \theta_1, \quad \left(\frac{dh}{dt} \right)_2 = v_2 \sin \theta_2 \] \hspace{1cm} (5)

(2), (4), (5) \(\Rightarrow \)

\[P_1 = P_2 \Rightarrow v_2 = v_1 \frac{\sin \theta_1}{\sin \theta_2} \] \hspace{1cm} (6)

\[v_2 = 8.34 \text{ mph} \]

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
4.3.21 (10 pts)

GOAL: Determine an electric motor's efficiency.

GIVEN: Mass of load, distance traveled and time needed to lift load and electrical power supplied to the motor.

DRAW:

![FBD Diagram](image)

FORMULATE EQUATIONS:
We'll determine the work done (force applied over distance), then use $P = W/t$ to find the average power and finally use $\eta = P_{out}/P_m$ to determine the efficiency.

SOLVE:
The work done is given by

$$W = Th = (200 \text{ kg})(9.81 \text{ m/s}^2)(4 \text{ m}) = 7848 \text{ J}$$

$$P = \frac{W}{t} = \frac{7848 \text{ J}}{3 \text{ s}} = 2616 \text{ W}$$

$$\eta = \frac{2616 \text{ W}}{3000 \text{ W}} = 0.872$$

Thus we see that $\eta = 0.872$ and we have an efficiency of 87.2 percent.

Bonus problems

5.1.16

GOAL: Determine acceleration of \(m_A \) and \(m_B \). Which one(s) accelerate is not immediately obvious.

GIVEN: \(T = 30 \, \text{N} \), \(m_A = 10 \, \text{kg} \), \(m_B = 1 \, \text{kg} \), \(\mu_{1a} = 0.4 \), \(\mu_{1d} = 0.35 \), \(\mu_{2a} = 0.2 \), \(\mu_{2d} = 0.15 \)

DRAW:

(a)

(b)

FORMULATE EQUATIONS:

First assume that neither block moves.

Block \(A \):

\[
0 = \left(\frac{T}{\sqrt{2}} + N_1 - m_A g \right) \tilde{J} + \left(\frac{T}{\sqrt{2}} - S_1 \right) \tilde{T}
\]

\[
\tilde{T}:
\]

\[
S_1 = \frac{T}{\sqrt{2}} = 21.2 \, \text{N}
\]

\[
\tilde{J}:
\]

\[
N_1 = -\frac{T}{\sqrt{2}} + m_A g = 76.9 \, \text{N}
\]

The maximum obtainable friction force is \(\mu_{1a} N_1 = 30.7 \, \text{N} \). All we need to keep Body \(A \) from slipping on Body \(B \) is for \(S_1 \) to be less than this and for this problem the applied force is 21.2 N. Therefore Body \(A \) doesn’t slip on Body \(B \).

Next, consider whether Bodies \(A \) and \(B \) move as a single unit. We’ll start by continuing with our assumption of no motion at all. Our new free body diagram is shown in Figure (b) and a balance of linear momentum gives us

Blocks \(A \) and \(B \):

\[
0 = \left(N_2 - (m_A + m_B) g + \frac{T}{\sqrt{2}} \right) \tilde{J} + \left(\frac{T}{\sqrt{2}} - S_2 \right) \tilde{T}
\]

\[
\tilde{T}:
\]

\[
S_2 = \frac{T}{\sqrt{2}} = 21.2 \, \text{N}
\]

\[
\tilde{J}:
\]

\[
N_2 = (m_A + m_B) g - \frac{T}{\sqrt{2}} = (11 \, \text{kg})(9.81 \, \text{m/s}^2) - \frac{30 \, \text{N}}{\sqrt{2}} = 86.7 \, \text{N}
\]

\[
S_{2_{\text{max}}} = \mu_{2a} N_2 = 0.2(86.7 \, \text{N}) = 17.3 \, \text{N}
\]

21.2 N exceeds the maximum friction force of 17.3 N and thus we will have slip between the bottom block and the floor. Thus we can now treat the two blocks as a single mass that’s slipping on the floor. Let \(x \) measure the horizontal displacement of the two blocks.

Blocks \(A \) and \(B \):

\[
(m_A + m_B) \ddot{x} \tilde{T} = \left(N_2 - (m_A + m_B) g + \frac{T}{\sqrt{2}} \right) \tilde{J} + \left(\frac{T}{\sqrt{2}} - S_2 \right) \tilde{T}
\]
\(\ddot{r}: \)

\[
\frac{(m_A + m_B)\ddot{x}}{\sqrt{2}} = \frac{T}{\sqrt{2}} - \mu_d N_2
\]

\[
(11 \text{ kg}) \ddot{x} = \frac{30 \text{ N}}{\sqrt{2}} - 0.15(86.7 \text{ N}) \Rightarrow \ddot{x} = 0.746 \text{ m/s}^2
\]

\[
\ddot{a}_A = \ddot{a}_B = 0.746 \ddot{r} \text{ m/s}^2
\]
5.1.23

GOAL: Explain whether the total work done by the spring on the two masses is zero or not

GIVEN: System configuration.

SOLVE: False. It is true that the forces on \(m_1 \) and \(m_2 \) are equal and opposite. These forces are acting on individual masses, the displacements and velocities of which are in general unrelated. The work done, \(\int F_1 \cdot dr_1 \) and \(\int F_2 \cdot dr_2 \) are therefore different.

Example: Initially the spring is extended \(L_1 - L_0 \), where \(L_0 \) is the unstretched length. If the masses are released they will move towards each other, their kinetic energies increasing in proportion to the work done by the spring.