Title
"Heat Transfer for a Cooling Fin"

Select
errlim= 1e-8
counters= 10 surfacegrid= 30

Variables
temp { degree (C) }

Definitions
{Basic SI units}
cm= 1e-2
c= 4*cm
d= 1 * cm
/* properties from text page 7-7 */
/* aluminum J/(m - s - degC) */
k= 247
/* forced convection */
h= 250
ambientTemp = 30
xFlux = -k*dx(temp) yFlux= -k*dy(temp)
flux = -k*grad(temp)
convection = h *(temp - ambientTemp)

Initial Values

Equations
dx(xFlux)+ dy(yFlux)= 0

Constraints

Boundaries
region 1
start (0,-d)
natural(temp)= convection line to (c,-d)
natural(temp)= convection line to (c,d)
natural(temp)= convection line to (0,d)
value(temp)= 65 line to finish

Monitors

Plots
contour(temp)
vector(xFlux,yFlux) as "Direction of heat flow"
elevation(temp) as "Temperature Distribution Along Center" from (0,0) to (c,0)
elevation(temp) as "Temperature Distribution Along Top" from (0,d) to (c,d)
elevation(yFlux) as "y_Flux Distribution Along Top" from (0,d) to (c,d)
elevation(xFlux) as "x_Flux Distribution Along Center" from (0,0) to (c,0)

End

Notifications
Info: Loading PDEase2D Student v3.0.1 Small Node Limit Engine (2 Equation)
Info: Starting run...
Info: Last Status: Grid#5 | Nodes=1004 | Cells=475 | PDE Err=6.317E-5
Info: Run completed.
Normal Exit: PDEase server being shutdown.
Heat Transfer for a Cooling Fin

Contours:
- min: 61.05
- a: 61.2
- b: 61.4
- c: 61.6
- d: 62
- e: 62.4
- f: 62.6
- g: 63
- h: 63.2
- i: 63.6
- j: 63.8
- k: 64.2
- l: 64.4
- m: 64.8
- max: 65

PdzPit01Cont: Gr=5 err=6.317E-5

Heat Transfer for a Cooling Fin
Direction of heat flow

PdzPit02Vect: Gr=5 err=6.317E-5
Heat Transfer for a Cooling Fin
Temperature Distribution Along Center

\[0 \leq X \leq 0.04 \]
\[61.21 \leq f(X) \leq 65 \]
From \((0,0)\) to \((0.04,0)\)

Curves:
- \(\text{temp}\)
Area: 2.508

Heat Transfer for a Cooling Fin
Temperature Distribution Along Top

\[0 \leq X \leq 0.04 \]
\[61.05 \leq f(X) \leq 65 \]
From \((0,0.01)\) to \((0.04,0.01)\)

Curves:
- \(\text{temp}\)
Area: 2.501