Quiz n°1

Name:

1/ Give the symbol and the formula for the normal stress in a prismatic bar under an axial load.
 \[\sigma = \frac{F}{A} \] (/1)
 Give the unit of stress and verify it with the above formula's method.
 \[P_a = \frac{N}{m^2} = \frac{Force}{Area} \] (/0.5)

2/ Give the symbol and the formula for the axial strain in a prismatic bar under an axial load.
 \[\varepsilon = \frac{\delta}{L} \] (/1)

3/ Give the formula that links the axial strain to the lateral strain.
 \[\nu = -\frac{\varepsilon_l}{\varepsilon_a} \] (/1)
 What is the name of the material property involved?
 Poisson's Ratio (/0.5)

4/ What is an approximate value for the above material property for metals?
 For cork?
 0.0 (/0.5)
 For rubber?
 0.49 (/0.5)

5/ On the diagram, denote the plastic deformation region and the elastic deformation region.
 (write down your work/derivation)

 Determine the ultimate tensile strength: \(~ 410 \text{ MPa}\) (/1)
 Determine the facture stress: \(~ 375 \text{ MPa}\) (/0.5)
 Determine the Young's modulus: \(~ 350 \text{ MPa}/0.075\) (/1)
 Determine the yield stress: \(~ 350 \text{ MPa}\) (/1)
 For point A, determine:
 - the total strain: \(\varepsilon_{\text{total}} = \varepsilon_{\text{el}} + \varepsilon_{\text{pl}}\) \(~ 0.18\) (/1)
 - the elastic strain: \(\varepsilon_{\text{el}} = \frac{\sigma}{E}\) \(~ 0.086\) (/1)
 - the plastic strain: \(\varepsilon_{\text{pl}} = \varepsilon_{\text{total}} - \varepsilon_{\text{el}}\) \(~ 0.09\) (/1)

Chapter 2 & uncertainty

J.-B. le Graverend
6/ What is a prismatic bar?

7/ Which one of the schematics below represents shear forces correctly?

8/ What is the relation between the axial strain given the displacement field $\bar{U}(x) = u(x) \hat{i}$?

What is the relation between the shear strain (in the xy plane) given the displacement field $\bar{U}(x,y) = u(x,y) \hat{i} + v(x,y) \hat{j}$?

\[\nabla \times \bar{U}(x,y) = \nabla \times (u(x,y) \hat{i} + v(x,y) \hat{j}) \Rightarrow \gamma_{xy} = \frac{\partial u(x,y)}{\partial y} + \frac{\partial v(x,y)}{\partial x} \]
9/ Draw and name (symbol) the shear strain on the schematic below.

\[\gamma = \tan^{-1} \frac{\delta}{a} \]

\[\gamma = \frac{\delta}{a} \]

\[\theta = \frac{\pi}{2} - \gamma \]

\(\gamma \) is the change in angle from \(\frac{\pi}{2} \).

10/ Which one of the equations below is correct whenever reporting the length of a bar?

- \[L = 52.3mm \pm 1mm \]
 - No

- \[L = 62.56mm \pm 1.00mm \]
 - No

- \[L = 62mm \pm 1mm \]
 - Yes

For the correct one, give the absolute uncertainty and the relative uncertainty in percent:

- absolute uncertainty = 1mm

- relative uncertainty = \(\frac{1}{62} \times 100 = 1.61\% \)